Head of AI

Dr. Gabriel Kalweit serves as Head of AI at CRIION, where he leads the integration of artificial intelligence into both oncology research and clinical translation. Initially rooted in Reinforcement Learning, his work now spans the full spectrum of machine learning — a breadth essential for tackling the complexity of cancer therapy optimization.

Working towards adaptive, data-driven strategies for optimizing treatment under uncertainty and high variability, he aims to enable long-term, open-ended (infinite-horizon) decision-making in oncology.

Publications

2025

  • Yannick Vogt, Maria Kalweit, Maria Alieva, Evely Ullrich, Joschka Boedecker, and Gabriel Kalweit. AI in modular concepts of natural killer cell therapy. In Natural Killer Cells, J. Zimmer and E. Ullrich. Springer, Berlin, Heidelberg, 2025. web
  • Mehdi Naouar, Yannick Vogt, Joschka Boedecker, Gabriel Kalweit, and Maria Kalweit. One for All: A Unified Approach to Classification and Self-Explanation. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2025. web
  • Gabriel Kalweit, Anusha Klett, Paula Silvestrini, Jens Rahnfeld, Mehdi Naouar, Yannick Vogt, Diana Infante, Rebecca Berger, Jesús Duque-Afonso, Tanja Nicole Hartmann, Marie Follo, Elitsa Bodurova-Spassova, Michael Lübbert, Roland Mertelsmann, Joschka Boedecker, Evelyn Ullrich, and Maria Kalweit. Leveraging a Foundation Model Zoo for Cell Similarity Search in Oncological Microscopy across Devices. In Frontiers in Oncology, 2025. web
  • Gabriel Kalweit, Evelyn Ullrich, Joschka Boedecker, Roland Mertelsmann, Maria Kalweit. AI in Optimized Cancer Treatment: Laying the Groundwork for Interdisciplinary Progress. Oxford Open Immunology, Issue “AI-Driven Immunology: Accelerating Discovery and Innovation”, 2025. web
  • Mehdi Naouar, Hanne Raum, Jens Rahnfeld, Yannick Vogt, Joschka Boedecker, Gabriel Kalweit and Maria Kalweit. Salvage: Shapley-distribution Approximation Learning Via Attribution Guided Exploration for Explainable Image Classification. The Thirteenth International Conference on Learning Representations (ICLR), 2025. web
  • Jens Rahnfeld, Mehdi Naouar, Gabriel Kalweit, Joschka Boedecker, Estelle Dubruc and Maria Kalweit. A Comparative Study of Explainability Methods for Whole Slide Classification of Lymph Node Metastases using Vision Transformers. PLOS Digital Health, 2025. web
  • Gabriel Kalweit, Maria Kalweit, Ignacio Mastroleo, Joschka Bödecker und Roland Mertelsmann. Künstliche Intelligenz in der Krebstherapie Künstliche Intelligenz in Forschung, Lehre und Hochschule, edited by Manfred Löwisch, Thomas Würtenberger, Max-Emanuel Geis and Dirk Heckmann, Duncker & Humblot, 2025, pp. 425-434. web
  • Maria Kalweit und Gabriel Kalweit. Warum wir neu lernen müssen, mit Maschinen zu sprechen – eine Momentaufnahme der Generativen Künstlichen Intelligenz im Januar 2024. Künstliche Intelligenz in Forschung, Lehre und Hochschule, edited by Manfred Löwisch, Thomas Würtenberger, Max-Emanuel Geis and Dirk Heckmann, Duncker & Humblot, 2025, pp. 111-127. web
  • Seyed Mahdi B. Azad, Zahra Padar, Gabriel Kalweit and Joschka Boedecker. SR-Reward: Taking The Path More Traveled. Transactions on Machine Learning Research (TMLR), 2025. web

2024

  • Paul Schmidt-Barbo, Gabriel Kalweit, Mehdi Naouar, Lisa Paschold, Edith Willscher, Christoph Schultheiss, Bruno Markl, Stefan Dirnhofer, Alexandar Tzankov, Mascha Binder and Maria Kalweit. Detection of disease-specific signatures in B cell repertoires of lymphomas using machine learning. In PLOS Computational Biology. web
  • Maria Kalweit and Gabriel Kalweit. Warum wir neu lernen müssen, mit Maschinen zu sprechen – eine Momentaufnahme der Generativen KI im Januar 2024. In Ordnung der Wissenschaft. web
  • Gabriel Kalweit, Anusha Klett, Mehdi Naouar, Jens Rahnfeld, Yannick Vogt, Diana Laura Infante Ramirez, Rebecca Berger, Jesus Duque Afonso, Tanja Nicole Hartmann, Marie Follo, Michael Luebbert, Roland Mertelsmann, Evelyn Ullrich, Joschka Boedecker and Maria Kalweit. Unsupervised Feature Extraction from a Foundation Model Zoo for Cell Similarity Search in Oncological Microscopy Across Devices. Accepted at the ICML 2024 Workshop on Foundation Models in the Wild. web
  • Hao Zhu, Brice De La Crompe, Gabriel Kalweit, Artur Schneider, Maria Kalweit, Ilka Diester and Joschka Boedecker. Multi-intention Inverse Q-learning for Interpretable Behavior Representation. Transactions on Machine Learning Research (TMLR), 2024. web

2023

  • Gabriel Kalweit, Maria Kalweit, Ignacio Mastroleo, Joschka Bödecker und Roland Mertelsmann. Künstliche Intelligenz in der Krebstherapie. Ordnung der Wissenschaft, 2023. web
  • Mehdi Naouar, Gabriel Kalweit, Ignacio Mastroleo, Philipp Poxleitner, Marc Metzger, Joschka Boedecker and Maria Kalweit. Robust Tumor Detection from Coarse Annotations via Multi-Magnification Ensembles. Oral at Digital Oncology, Hannover 2023. web
  • Mehdi Naouar, Gabriel Kalweit, Anusha Klett, Yannick Vogt, Paula Silvestrini, Diana Infante, Roland Mertelsmann, Joschka Boedecker and Maria Kalweit. CellMixer: Annotation-free Semantic Cell Segmentation of Heterogeneous Cell Populations. Oral at NeurIPS 2023 Workshop on Medical Imaging. web
  • Yannick Vogt, Mehdi Naouar, Maria Kalweit, Cornelius Miething, Justus Duyster, Roland Mertelsmann, Gabriel Kalweit and Joschka Boedecker. Stable Online and Offline Reinforcement Learning for Antibody CDRH3 Design. NeurIPS 2023 Workshop on Machine Learning in Structural Biology. web

2022

  • Maria Kalweit, Gabriel Kalweit, Moritz Werling and Joschka Boedecker. Deep Surrogate Q-Learning for Autonomous Driving. ICRA 2022. web
  • Jessica Borja-Diaz*, Oier Mees*, Gabriel Kalweit, Lukas Hermann, Joschka Boedecker and Wolfram Burgard. Affordance Learning from Play for Sample-Efficient Policy Learning. 2022 International Conference on Robotics and Automation (ICRA). web
  • Gabriel Kalweit, Maria Kalweit, Joschka Boedecker. Robust and Data-efficient Q-learning by Composite Value-estimation. Transactions on Machine Learning Research (TMLR), 2022. web
  • Erick Rosete-Beas*, Oier Mees*, Gabriel Kalweit, Joschka Boedecker and Wolfram Burgard. Latent Plans for Task-Agnostic Offline Reinforcement Learning. Proceedings of the 6th Conference on Robot Learning (CoRL), 2022. web
  • Thomas Hügle, Leo Caratsch, Matteo Caorsi, Jules Maglione, Alexandre Dumusc, Diana Dan, Marc Blanchard, Gabriel Kalweit and Maria Kalweit. Automated Recognition and Monitoring of Dorsal Finger Folds by a Convolutional Neural Network as a Potential Digital Biomarker for Joint Swelling in Patients with Rheumatoid Arthritis. Digital Biomarkers, 2022 web

2021

  • Branka Mirchevska, Maria Hügle, Gabriel Kalweit, Moritz Werling, Joschka Boedecker. Amortized Q-learning with Model-based Action Proposals for Autonomous Driving on Highways. ICRA 2021. web
  • Maria Hügle, Ulrich A Walker, Axel Finckh, Ruediger Mueller, Gabriel Kalweit, Almut Scherer, Joschka Boedecker, Thomas Hügle. Personalized Prediction of Disease Activity in Patients with Rheumatoid Arthritis Using an Adaptive Deep Neural Network. PLOS ONE. web
  • Maria Kalweit, Gabriel Kalweit and Joschka Boedecker. AnyNets: Adaptive Deep Neural Networks for Medical Data with Missing Values. IJCAI 2021 Workshop on Artificial Intelligence for Function, Disability, and Health. web
  • Maria Kalweit, Gabriel Kalweit, Moritz Werling and Joschka Boedecker. Deep Surrogate Q-Learning for Autonomous Driving. IJCAI 2021 Workshop on Artificial Intelligence for Autonomous Driving. web
  • Gabriel Kalweit, Maria Kalweit, Mansour Alyahyay, Zoe Jaeckel, Florian Steenbergen, Stefanie Hardung, Ilka Diester and Joschka Boedecker. NeuRL: Closed-form Inverse Reinforcement Learning for Neural Decoding. ICML 2021 Workshop on Computational Biology. web
  • Gabriel Kalweit, Maria Huegle, Moritz Werling and Joschka Boedecker. Q-learning with Long-term Action-space Shaping to Model Complex Behavior for Autonomous Lane Changes. IROS 2021. web
  • Jessica Borja-Diaz, Oier Mees, Gabriel Kalweit, Lukas Hermann, Joschka Boedecker and Wolfram Burgard. Affordance learning from play for sample-efficient policy learning. NeurIPS 2021 Workshop on Robot Learning. web

2020

  • Gabriel Kalweit*, Maria Huegle*, Moritz Werling and Joschka Boedecker. Deep Inverse Q-learning with Constraints. Advances in Neural Information Processing Systems, 2020. web
  • Maria Huegle, Gabriel Kalweit, Moritz Werling and Joschka Boedecker. Dynamic Interaction-Aware Scene Understanding for Reinforcement Learning in Autonomous Driving. ICRA 2020. web
  • Oier Mees*, Markus Merklinger*, Gabriel Kalweit and Wolfram Burgard. Adversarial Skill Networks: Unsupervised Robot Skill Learning from Video. CVPR 2020 Workshop on Learning from Unlabeled Videos. web
  • Oier Mees*, Markus Merklinger*, Gabriel Kalweit and Wolfram Burgard. Adversarial Skill Networks: Unsupervised Robot Skill Learning from Video. ICRA 2020 (Nominated for Best Paper Award in Cognitive Robotics). web
  • Maria Hügle, Gabriel Kalweit, Thomas Hügle and Joschka Boedecker. A Dynamic Deep Neural Network For Multimodal Clinical Data Analysis. AAAI 2020 Workshop on Health Intelligence. Explainable AI in Healthcare and Medicine. Studies in Computational Intelligence, Springer (2020). web

2019

  • Maria Huegle*, Gabriel Kalweit*, Branka Mirchevska, Moritz Werling and Joschka Boedecker. Dynamic Input for Deep Reinforcement Learning in Autonomous Driving. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2019. web
  • Gabriel Kalweit, Maria Huegle and Joschka Boedecker. Composite Q-Learning. Extended abstract at RSS 2019 Workshop on Combining Learning and Reasoning – Towards Human-Level Robot Intelligence.
  • Markus Merklinger, Oier Mees, Gabriel Kalweit and Wolfram Burgard. Adversarial Skill Networks: Unsupervised Skill Learning from Video. Extended abstract at RSS 2019 Workshop on Combining Learning and Reasoning – Towards Human-Level Robot Intelligence.
  • Maria Hügle, Gabriel Kalweit, Moritz Werling, and Joschka Boedecker. Learning Dynamic Representations for Deep Reinforcement Learning in Autonomous Driving. Extended abstract at RSS 2019 Workshop on Scene and Situation Understanding for Autonomous Driving.

2017

Gabriel Kalweit, Joschka Boedecker (2017) Uncertainty-driven Imagination for Continuous Deep Reinforcement Learning. Annual Conference on Robot Learning (CoRL) 2017. web

Patents

  • Maria Huegle, Gabriel Kalweit, Branka Mirchevska, Moritz Werling and Joschka Boedecker. (EP3730369A1) Selecting a Motion Action for an Automated Vehicle Considering a Variable Number of Other Road Users. web
  • Moritz Werling, Branka Mirchevska, Joschka Bödecker, Maria Hügle and Gabriel Kalweit. (10 2020 106 816.6) Steuerung eines automatisierten Kraftfahrzeugs. web
  • Moritz Werling, Gabriel Kalweit, Maria Hügle and Joschka Bödecker. (10 2020 121 150.3) Trainieren eines Reinforcement Learning Agenten zur Steuerung eines autonomen Systems. web
  • Joschka Bödecker, Maria Hügle, Gabriel Kalweit and Moritz Werling. (WO002022033746A1) Training a Reinforcement Learning Agent to Control an Autonomous System. web
  • Joschka Boedecker, Maria Huegle, Gabriel Kalweit, Moritz Werling. (US 2024/0037447 A1) Training a Reinforcement Learning Agent to Control an Autonomous System. web